Towards a new approach of mesh adaptation methods and its impact on accuracy for the simulation of stiff PDEs

Marc Massot

The present work is the result of a team work involving

  • Thomas Bellotti (CNRS, EM2C - Fédé Maths CS)
  • Loïc Gouarin (École polytechnique, CMAP)
  • Josselin Massot (École polytechnique, CMAP)
  • Pierre Matalon (École polytechnique, CMAP)
  • Laurent Séries (École polytechnique, CMAP)
  • Christian Tenaud (CNRS, EM2C - Fédé Maths CS)

The present work is the result of a team work involving

  • Thomas Bellotti (CNRS, EM2C - Fédé Maths CS)
  • Loïc Gouarin (IR École polytechnique, CMAP)
  • Josselin Massot (IR École polytechnique, CMAP)
  • Pierre Matalon (IR École polytechnique, CMAP)
  • Laurent Séries (IR École polytechnique, CMAP)
  • Christian Tenaud (CNRS, EM2C - Fédé Maths CS)

Context

Burgers equation - small hat problem

\[ \partial_t u + \partial_x \left ( f(u) \right ) = 0, \quad t \geq 0, \quad x \in \mathbb{R}, \qquad f(u) = \dfrac{u^2}{2}, \]

Consider the Cauchy problem with initial cond.

\[ u^0(x)=\left\{% \begin{array}{cc} \hfill 0, & x \in ]- \infty,-1]\cup [1, + \infty[,\\ x+1, & x \in ]-1,0], \hfill \\ 1-x, & x \in[0,1[. \hfill \\ \end{array} \right. \]

  • Shock formation at time \(T^* = 1\)
  • Leading to irreversible solution
  • RH condition governs shock dynamics

Burgers equation - small hat problem

\[ \partial_t u + \partial_x \left ( f(u) \right ) = 0, \quad t \geq 0, \quad x \in \mathbb{R}, \qquad f(u) = \dfrac{u^2}{2}, \]

Consider the Cauchy problem with initial cond.

\[ u^0(x)=\left\{% \begin{array}{cc} \hfill 0, & x \in ]- \infty,-1]\cup [1, + \infty[,\\ x+1, & x \in ]-1,0], \hfill \\ 1-x, & x \in[0,1[. \hfill \\ \end{array} \right. \]

  • Shock formation at time \(T^* = 1\)
  • Leading to irreversible solution
  • RH condition governs shock dynamics

Burgers equation - small hat problem

\[ \partial_t u + \partial_x \left ( f(u) \right ) = 0, \quad t \geq 0, \quad x \in \mathbb{R}, \qquad f(u) = \dfrac{u^2}{2}, \]

Consider the Cauchy problem with initial cond.

\[ u^0(x)=\left\{% \begin{array}{cc} \hfill 0, & x \in ]- \infty,-1]\cup [1, + \infty[,\\ x+1, & x \in ]-1,0], \hfill \\ 1-x, & x \in[0,1[. \hfill \\ \end{array} \right. \]

  • Shock location \(\varphi(t)=\sqrt{2(1+t)}-1\)
  • Propagation speed shock \(\sigma(t)={1}/{\sqrt{2(1+t)}}\)
  • Shock amplitude \([u]=\sqrt{{2}/{(1+t)}}\)

Burgers equation - sinus problem

\[ \partial_t u + \partial_x \left ( f(u) \right ) = 0, \quad t \geq 0, \quad x \in \mathbb{R}, \qquad f(u) = \dfrac{u^2}{2}, \]

Consider the Cauchy problem with initial conditions:

\[ u^0(x) = \frac{1}{2} (1+\sin(\pi(x-1))) \quad x \in [-1,1] \]

Adaptive Multiresolution

  • Minimum level \(\underline{\ell}\) and maximum level \(\bar{\ell}\).
  • Cells: \[ C_{\ell, k}:=\prod_{\alpha=1}^d\left[2^{-\ell} k_\alpha, 2^{-\ell}\left(k_\alpha+1\right)\right] \]
  • Finest step: \(\Delta x=2^{-\bar{\ell}}\).
  • Level-wise step: \(\Delta x_{\ell}:=2^{-\ell}=2^{\Delta \ell} \Delta x\).

Wavelets

Decomposition of the solution on a wavelet basis [Daubechies, ’88], [Mallat, ’89] to measure its local regularity. “Practical” approach by [Harten, ’95], [Cohen et al., ’03], [Duarte et al., ’11-’16].

Projection operator

Prediction operator at order \(2 s +1\)

\[ {\hat f}_{\ell+1,2 k}={f}_{\ell, k}+\sum_{\sigma=1}^s \psi_\sigma\left({f}_{\ell, k+\sigma}-{f}_{\ell, k-\sigma}\right) \]

Details are regularity indicator \[ {\mathrm{d}}_{\ell, {k}}:={f}_{\ell, {k}}-{\hat{f}}_{\ell, {k}} \]

Let \(f \in W^{\nu, \infty}\) (neigh. of \(C_{\ell, k}\) ), then \[ \left|{\mathrm{d}}_{\ell, k}\right| \lesssim 2^{-\ell \min (\nu, 2 s +1)}|f|_{W^{\min (\nu, 2 s +1), \infty}} \]

Fast wavelet transform:

means at the finest level can be recast as means at the coarsest level + details \[ \begin{array}{rlr} {f}_{\overline{\ell}} & \Longleftrightarrow & \left({f}_{\underline{\ell}}, {{d}}_{\underline{\ell} +1}, \ldots, {d}_{\bar{\ell}}\right)\\ \end{array} \]

Mesh coarsening (static)

Local regularity of the solution allows to select areas to coarsen

\[ {{f}}_{\bar{\ell}} \rightarrow \left({f}_{\underline{\ell}}, {\mathbf{d}}_{\underline{\ell}+1}, \ldots, {\mathbf{d}}_{\bar{\ell}}\right) \rightarrow \left({f}_{\underline{\ell}}, {\tilde{\mathbf{d}}}_{\underline{\ell}+1}, \ldots, \tilde{{\mathbf{d}}}_{\bar{\ell}}\right) \rightarrow {\tilde{{f}}}_{\bar{\ell}} \] \[ \tilde{{\mathrm{d}}}_{\ell, k}= \begin{cases}0, & \text { if } \left|{\mathbf{d}}_{\ell, k}\right| \leq \epsilon_{\ell}=2^{-d \Delta \ell} \epsilon, \quad \rightarrow \quad\left\|{\mathbf{f}}_{\bar{\ell}}-\tilde{{\mathbf{f}}}_{\bar{\ell}}\right\|_{\ell^p} \lesssim \epsilon \\ {\mathrm{d}}_{\ell, k}, & \text { otherwise} \end{cases} \]

Set a small (below \(\epsilon_{\ell}\)) detail to zero \(\equiv\) erase the cell \(C_{\ell, k}\) from the structure

Examples

Equation

\[ f(x) = exp(-50x^2) \; \text{for} \; x\in[-1, 1] \]

min level 1
max level 12
ε 10-3
compression rate 96.29%
error 0.00078

Examples

Equation

\[ f(x) = \left\{ \begin{array}{l} 1 - |2x| \; \text{if} \; -0.5 < x < 0.5,\\ 0 \; \text{elsewhere} \end{array} \right. \]

min level 1
max level 12
ε 10-3
compression rate 98.49%
error 0

Examples

Equation

\[ f(x) = 1 - \sqrt{\left| sin \left( \frac{\pi}{2} x \right) \right|} \; \text{for} \; x\in[-1, 1] \]

min level 1
max level 12
ε 10-3
compression rate 96.29%
error 0.00053

Examples

Equation

\[ f(x) = \tanh(50 |x|) - 1 \; \text{for} \; x\in[-1, 1] \]

min level 1
max level 12
ε 10-3
compression rate 97.46%
error 0.002

Time evolution of PDEs

  • Finite volumes with global time step \(\Delta t = \Lambda(\Delta x)\)
  • Use dynamic mesh refinement

Mesh updated using “old” information at time \(t\) to accommodate the one at time \(t + \Delta t\)

  • Propagation of information : add security cells
  • Formation of singularities : (regularity index: \(\nu =0\), \(\mu = \min(\nu,2 s +1)\)) refine if \[ \left|{\mathbf{d}}_{\ell, k}\right| \geq \epsilon_{\ell}\,2^{d+\mu} \]

Finite volumes / conservation / order

Flux evaluation at interfaces between levels

Using the prediction operator allows to evaluate fluxes at the same level

Finite volume method

We use a Godunov flux for the small hat problem

Numerical Analysis and Modified Equations

Linear scalar transport equation

In this work, we are concerned with the numerical solution of the Cauchy problem associated with the linear scalar conservation law

\[ \partial_t u(t, x)+V \partial_x u(t, x)=0, \quad(t, x) \in \mathbb{R}^{+} \times \mathbb{R} \]

where \(V\) is the transport velocity, taken \(V>0\) without loss of generality. we consider 1 d problems. The extension to \(2\mathrm{~d}\) / \(3\mathrm{~d}\) problems is straightforward and usually done by tensorization [Bellotti2022] and yields analogous conclusions.

The discrete volumes are \[ C_{\ell, k}:=\left[2^{-\ell} k, 2^{-\ell}(k+1)\right], \quad k \in \{ 0,2^{\ell}-1 \}, \] for any \(\ell \in \{ \underline{\ell}, \bar{\ell} \}\). The measure of each cell at level \(\ell\) is \(\Delta x_{\ell}:=2^{-\ell}\) and we shall indicate \(\Delta x:=\Delta x_{\bar{\ell}}\). The cell centers are \(x_{\ell, k}:=\) \(2^{-\ell}(k+1 / 2)\). Finally, we shall indicate \(\Delta \ell:=\bar{\ell}-\ell\), hence \(\Delta x_{\ell}=2^{\Delta \ell} \Delta x\).

Finite Volume scheme

Finite Volume scheme at the finest level of resolution \(\bar{\ell}\) for any cell of indices \(\bar{k} \in \{ 0,2^{\bar{\ell}}-1 \}\). Explicit schemes read:

\[ \mathrm{v}_{\bar{\ell}, \bar{k}}^{n+1}=\mathrm{v}_{\bar{\ell}, \bar{k}}^n-\frac{\Delta t}{\Delta x}\left(\Phi\left(\mathrm{v}_{\bar{\ell}, \bar{k}+1 / 2}^n\right)-\Phi\left(\mathrm{v}_{\bar{\ell}, \bar{k}-1 / 2}^n\right)\right) \]

where we utilize the same linear numerical flux for the left and the right flux (conservativity) \[ \Phi\left(\mathbf{v}_{\bar{\ell}, \bar{k}-1 / 2}\right):=V \sum_{\alpha=\underline{\alpha}}^{\bar{\alpha}} \phi_\alpha \mathbf{v}_{\bar{\ell}, \bar{k}+\alpha}, \quad \Phi\left(\mathbf{v}_{\bar{\ell}, \bar{k}+1 / 2}\right):=V \sum_{\alpha=\underline{\alpha}}^{\bar{\alpha}} \phi_\alpha v_{\bar{\ell}, \bar{k}+1+\alpha} \]

Modified equations

[Carpentier et al 97] or Cauchy-Kowalewski procedure [Harten et al 87]

\[ \partial_t u\left(t^n, x_{\bar{\ell}, \bar{k}}\right)+V \partial_x u\left(t^n, x_{\bar{\ell}, \bar{k}}\right)=\sum_{h=2}^{+\infty} \Delta x^{h-1} \sigma_h \partial_x^h u\left(t^n, x_{\bar{\ell}, \bar{k}}\right) \]

  • Upwind scheme \[ \partial_t u+V \partial_x u=\frac{\Delta x V}{2}(1-\lambda V) \partial_{x x} u+O\left(\Delta x^2\right) \]
  • Lax-Wendroff scheme \[ \partial_t u+V \partial_x u=-\frac{\Delta x^2 V}{6}\left(1-\lambda^2 V^2\right) \partial_x^3 u+O\left(\Delta x^3\right) \]
  • OSMP-3 scheme \[ \partial_t u+V \partial_x u=\frac{\Delta x^3 V}{24}\left(-\lambda^3 V^2+2 \lambda^2 V^2+\lambda V-2\right) \partial_x^4 u+O\left(\Delta x^4\right) \]

How to include MRA I

We introduce the reconstruction operator \(\hat{s}\) instead of \(s\) on the cells \(\left(\bar{\ell}, 2^{\Delta \ell} k+\delta\right)\) for any \(\delta \in \mathbb{Z}\) at the finest level

  • \(\hat{s}=s\) : exact local flux reconstruction [Cohen et al. 2003].
  • \(\hat{s}=0\) but \(s>0\), direct evaluation or naive evaluation [Hovhannisyan et al 2010].

\[ \mathbf{w}_{\bar{\ell}, \bar{k}}^{n+1}=\mathbf{w}_{\bar{\ell}, \bar{k}}^n-\frac{\Delta t}{\Delta x}\left(\Phi\left(\hat{\hat{\mathbf{w}}}_{\bar{\ell}, \bar{k}+1 / 2}^n\right)-\Phi\left(\hat{\hat{\mathbf{w}}}_{\bar{\ell}, \bar{k}-1 / 2}^n\right)\right) \] \[ \Phi\left(\hat{\hat{\mathbf{w}}}_{\bar{\ell}, \bar{k}-1 / 2}\right):=V \sum_{\alpha=\underline{\alpha}}^{\bar{\alpha}} \phi_\alpha \hat{\hat{\mathbf{w}}}_{\bar{\ell}, \bar{k}+\alpha} \]

How to include MRA II

Let now \((\ell, k) \in S\left(\tilde{\Lambda}^{n+1}\right)\), taking the projection yields the multiresolution scheme

\[ \mathbf{w}_{\ell, k}^{n+1}=\mathbf{w}_{\ell, k}^n-\frac{\Delta t}{\Delta x_{\ell}}\left(\Phi\left(\hat{\hat{\mathbf{w}}}_{\bar{\ell}, 2^{\Delta \ell}(k+1)+1 / 2}^n\right)-\Phi\left(\hat{\hat{\mathbf{w}}}_{\bar{\ell}, 2^{\Delta \ell} k-1 / 2}^n\right)\right) \]

\[ \Phi\left(\hat{\hat{\mathbf{w}}}_{\bar{\ell}, 2^{\Delta \ell} k-1 / 2}\right):=V \sum_{\alpha=\underline{\alpha}}^{\bar{\alpha}} \phi_\alpha \hat{\hat{\mathbf{w}}}_{\bar{\ell}, 2^{\Delta \ell} k+\alpha} \]

Some information is loss because of the averaging procedure: two different schemes we can consider for the computation of the modified equations.

Theorem

The local truncation error of the reference Finite Volume scheme and the one of the adaptive Finite Volume scheme are the same up to order \(2\hat{s}+1\) included.

Modified equations including MRA

This result establishes at which order the modified equations of the reference scheme are perturbed by the introduction of the adaptive scheme. However, it does not characterize the terms in the modified equations above order \(2\hat{s}+1\) in \(\Delta x\) (symbolic computations).

  • Upwind scheme (original) \[ {\color{blue}{% \partial_t u+V \partial_x u=\frac{\Delta x V}{2}(1-\lambda V) \partial_{x x} u+O\left(\Delta x^2\right) }} \]
  • Upwind scheme with MRA \[ \begin{array}{lr} \partial_t u+V \partial_x u=\frac{\Delta x V}{2}\left(2^{\Delta \ell}-\lambda V\right) \partial_{x x} u+O\left(\Delta x^2\right), & \text { for } \hat{s}=0 \\ \partial_t u+V \partial_x u=\frac{\Delta x V}{2}(1-\lambda V) \partial_{x x} u-\frac{\Delta x^2 V}{6}\left(1-\lambda^2 V^2\right) \partial_x^3 u+& \\ \ \ \ \ \ \ \ \ \ \ \frac{\Delta x^3 V}{24}\left(-3 \Delta \ell 2^{2 \Delta \ell}+2^{2 \Delta \ell}-\lambda^3 V^3\right) \partial_x^4 u+O\left(\Delta x^4\right), & \text { for } \hat{s}=1 \end{array} \]

Modified equations including MRA

This result establishes at which order the modified equations of the reference scheme are perturbed by the introduction of the adaptive scheme. However, it does not characterize the terms in the modified equations above order \(2\hat{s}+1\) in \(\Delta x\) (symbolic computations).

  • Lax-Wendroff scheme (original) \[ {\color{blue}{\partial_t u+V \partial_x u=-\frac{\Delta x^2 V}{6}\left(1-\lambda^2 V^2\right) \partial_x^3 u+O\left(\Delta x^3\right)}} \]
  • Lax-Wendroff scheme with MRA \[ \begin{array}{lr} \partial_t u+V \partial_x u=\frac{\Delta x \lambda V^2}{2}\left(2^{\Delta \ell}-1\right) \partial_{x x} u+O\left(\Delta x^2\right), & \text { for } \hat{s}=0 \\ \partial_t u+V \partial_x u=-\frac{\Delta x^2 V}{6}\left(1-\lambda^2 V^2\right) \partial_x^3 u+&\\ \ \ \ \ \ \ \ \ \ \ \frac{\Delta x^3 \lambda V^2}{24}\left(-3 \Delta \ell 2^{2 \Delta \ell}+2^{2 \Delta \ell}-\lambda^2 V^2\right) \partial_x^4 u+O\left(\Delta x^4\right), & \text { for } \hat{s}=1 \end{array} \]

Theoretical results on the global error

Theorem 2

Assume that

  • The reference scheme satisfies the restricted stability condition \(\|E\| \leq 1\)
  • The Harten-like scheme satisfies the restricted stability condition \(\left\|\bar{E}_{\Lambda}\right\| \leq 1\) for any \(\Lambda\).

Then, for smooth solution, in the limit \(\Delta x \rightarrow 0\) (i.e. \(\bar{\ell} \rightarrow+\infty\) ) and for \(\Delta \underline{\ell}=\bar{\ell}-\underline{\ell}\) kept fixed, we have the error estimate

\[ \left\|\mathbf{v}_{\bar{\ell}}^n-\mathbf{w}_{\bar{\ell}}^n\right\| \leq C_{t r} t^n \Delta x^{2 \hat{s}+1}+C_{m r} \frac{t^n}{\lambda \Delta x} \epsilon \]

where \(C_{t r}=C_{t r}\left(\bar{\ell}-\underline{\ell},\left(\phi_\alpha\right)_\alpha, \lambda, \hat{s}, V\right)\) and \(C_{m r}=C_{m r}\left(\bar{\ell}-\underline{\ell},\left(\phi_\alpha\right)_\alpha, \lambda, \hat{s}, s, V\right)\). \[ \left\|\mathbf{u}_{\bar{\ell}}^n-\mathbf{w}_{\bar{\ell}}^n\right\| \leq C_{r e f} t^n \Delta x^\theta+C_{t r} t^n \Delta x^{2 \hat{s}+1}+C_{m r} \frac{t^n}{\lambda \Delta x} \epsilon \]

Comments on theorem

  • The error estimate contains three contributions: the discretization error of the reference scheme, the perturbation error between the reference and the adaptive scheme, and the thresholding error coming from the multiresolution
  • The constant \(C_{\mathrm{tr}}\) generally grows exponentially with \(\bar{\ell}-\underline{\ell}\), sometimes also involving linear terms, i.e. \(\hat{s}=1\). We have the following cases:
    • \(\theta<2 \hat{s}+1\). The error of the reference scheme dominates the perturbation introduced by the adaptive scheme \(\left\|\mathbf{u}_{\bar{\ell}}^N-\mathbf{w}_{\bar{\ell}}^N\right\| \leq C_{\mathrm{ref}} T \Delta x^\theta+C_{\mathrm{mr}} \frac{T}{\lambda \Delta x} \epsilon\). A thresholding error of the same order as the reference error \(\epsilon \sim \Delta x^{\theta+1}\).
    • \(\theta=2 \hat{s}+1\). The error of the reference scheme and the perturbation order are comparable (first example!) We have \(\left\|\mathbf{u}_{\bar{\ell}}^N-\mathbf{w}_{\bar{\ell}}^N\right\| \leq\left(C_{\mathrm{ref}}+C_{\mathrm{tr}}\right) T \Delta x^\theta+C_{\mathrm{mr}} \frac{T}{\lambda \Delta x} \epsilon\).
    • \(\theta>2 \hat{s}+1\). The perturbation introduced by the adaptive scheme dominates the error of the reference scheme. Therefore, multiresolution introduces a large perturbation that yields a different convergence rate. We have \(\left\|\mathbf{u}_{\bar{\ell}}^N-\mathbf{w}_{\bar{\ell}}^N\right\| \leq C_{\mathrm{tr}} T \Delta x^{2 \hat{s}+1}+C_{\mathrm{mr}} \frac{T}{\lambda \Delta x} \epsilon\), thus \(\epsilon \sim \Delta x^{2 \hat{s}+2}\) (AMR !)

How to compute fluxes at the finest level

How to compute fluxes at the finest level

How to compute fluxes at the finest level

How to compute fluxes at the finest level

Burgers results

Burgers results (Error for scheme order 1)






Burgers results (Error for scheme order 1)






Burgers results (Error for scheme order 1)






Burgers results (MR solution and level for scheme order 1)

Burgers results (MR solution and error for scheme order 1)

Burgers results (MR+MLF sol. and level for scheme order 1)

Burgers results (MR+MLF sol. and error for scheme order 1)

Burgers results (Error for scheme order 1)






Burgers results (MR solution and level for scheme order 1)

Burgers results (MR solution and error for scheme order 1)

Burgers results (MR+MLF sol. and level for scheme order 1)

Burgers results (MR+MLF sol. and error for scheme order 1)

Burgers results (Error for scheme order 2)






Burgers results (Error for scheme order 3)






Burgers results (Error for scheme order 3)






Burgers results (MR solution and level for scheme order 3)

Burgers results (MR solution and error for scheme order 3)

Burgers results (MR+MLF sol. and level for scheme order 3)

Burgers results (MR+MLF sol. and error for scheme order 3)

Burgers results (MR VS MR+MLF error for scheme order 3)

Burgers 2D results (MR+MLF solution order 1)

Euler 2D results (MR+MLF solution order 3 (OSMP scheme))

Euler 2D results (MR+MLF solution order 3 (OSMP scheme))

Adaptive mesh refinement software

Mesh adaptation

Open source software

Name Data structure Adaptation criteria Time scheme Load balancing
AMReX block heuristic global/local SFC
Dendro tree wavelet global SFC
Dyablo tree heuristic global SFC
Peano tree - - SFC
P4est tree - - SFC
samurai interval heuristic/wavelet RK/splitting/IMEX
time-space/code coupling
SFC/diffusion algorithm

samurai: create a unified framework for testing a whole range
of mesh adaptation methods with the latest generation of numerical schemes.

samurai

Design principles

  • Compress the mesh according to the level-wise spatial connectivity along each Cartesian axis.
  • Achieve fast look-up for a cell into the structure, especially for parents and neighbors.
  • Maximize the memory contiguity of the stored data to allow for caching and vectorization.
  • Facilitate inter-level operations which are common in many numerical techniques.

Compression rates

Compression rates

Level Num. of cells p4est samurai (leaves) samurai (all) ratio
\(9\) 66379 2.57 Mb 33.68 Kb 121 Kb 21.24
\(10\) 263767 10.25 Mb 66.64 Kb 236.8 Kb 43.28
\(11\) 1051747 40.96 Mb 132.36 Kb 467.24 Kb 87.66
\(12\) 4200559 163.75 Mb 263.6 Kb 927 Kb 176.64
\(13\) 16789627 654.86 Mb 525.9 Kb 1.85 Mb 353.98
\(14\) 67133575 2.61 Gb 1.05 Mb 3.68 Mb 709.24

Roadmap

Scientific Collaborations

  • Lattice Boltzmann methods and multiresolution - Thomas Bellotti (EM2C/CNRS/CS) and Benjamin Graille (LMO/Université Paris-Saclay)
  • Plasma discharges and electric propulsion - Alejandro Alvarez-Laguna (LPP/École polytechnique) and Louis Reboul (ONERA) Teddy Pichard and Zoubaïr Tazakkati (CMAP/École polytechnique)
  • DNS of lithium-ion batteries based on high-resolution 3D images of porous electrode microstructures - Ali Asad (TotalEnergies) and Laurent François (ONERA)
  • Sharp interface method for low Mach two-phase flows - Nicolas Grenier (LISN/Université Paris-Saclay) and Christian Tenaud (EM2C/CNRS/CS)
  • Low-Mach reactive flows - Christian Tenaud (EM2C/CNRS/CS)
  • Interfacial flow simulation relying on diffuse interface / two-scale modeling - Giuseppe Orlando, Ward Haegeman (CMAP/Ecole polytechnique), Samuel Kokh (CEA/MdlS), Joël Dupays, Clément Le Touze (ONERA), Marica Pelanti (ENSTA/IP Paris), Khaled Saleh (Aix-Marseille Université), Jean-Marc Hérard (EDF)
  • High-fidelity simulation of the Hydrogen risk - Luc Lecointre, Pierre-Alexandre Masset, Etienne Studer (CEA), Sergey Koudriakov (CEA) and Christian Tenaud (EM2C/CNRS/CS)

Five projects - NASA Modelling Summer Visit 2025

Five groups from France involving 15 students / post-doctoral fellows / research software engineers / faculties

  • Mathematical modeling and simulation of non-equilibrium plasmas for the prediction of electric propulsion and plasma discharges including sheath
  • Code coupling : multistep coupling algorithm (Tuesday’s seminar)
  • A two-phase flow model with scale separation for the separated-to-disperse phase transition in high-velocity regimes
  • A dual splitting/ImEx strategy for multicomponent reacting flows with space/time adaptation and error control
  • Simulation of hybrid dense-rarefied flows relying on relaxation schemes and a hierarchy of moment methods

Five projects - NASA Modelling Summer Visit 2025

Five groups from France involving 15 students / post-doctoral fellows / research software engineers / faculties

  • Mathematical modeling and simulation of non-equilibrium plasmas for the prediction of electric propulsion and plasma discharges including sheath
  • Code coupling : multistep coupling algorithm (Tuesday’s seminar)
  • A two-phase flow model with scale separation for the separated-to-disperse phase transition in high-velocity regimes
  • A dual splitting/ImEx strategy for multicomponent reacting flows with space/time adaptation and error control
  • Simulation of hybrid dense-rarefied flows relying on relaxation schemes and a hierarchy of moment methods

Thank you for your attention

Burgers results (MR solution and level for scheme order 3)

Burgers results (MR solution and error for scheme order 3)

Burgers results (MR+MLF sol. and level for scheme order 3)

Burgers results (MR+MLF sol. and error for scheme order 3)

Burgers results (MR+MLF sol. order 1) small hat

Burgers results (MR+MLF sol. order 1) sinus

\(\epsilon = 1e-2\), \(\underline{\ell} = 2\), \(\bar{\ell} = 12\)