A dual splitting/ImEx strategy for multicomponent reacting flows with space /time adaptation and error control

Josselin Massot, Laurent Series, Christian Tenaud, Loïc Gouarin, Pierre Matalon, Marc Massot

Mesh adaptation and error control

Burgers equation - sinus problem

\[ \partial_t u + \partial_x \left ( f(u) \right ) = 0, \quad t \geq 0, \quad x \in \mathbb{R}, \qquad f(u) = \dfrac{u^2}{2}, \]

Consider the Cauchy problem with initial conditions:

\[ u^0(x) = \frac{1}{2} (1+\sin(\pi(x-1))) \quad x \in [-1,1] \]

Adaptive Multiresolution

  • Minimum level \(\underline{\ell}\) and maximum level \(\bar{\ell}\).
  • Cells: \[ C_{\ell, k}:=\prod_{\alpha=1}^d\left[2^{-\ell} k_\alpha, 2^{-\ell}\left(k_\alpha+1\right)\right] \]
  • Finest step: \(\Delta x=2^{-\bar{\ell}}\).
  • Level-wise step: \(\Delta x_{\ell}:=2^{-\ell}=2^{\Delta \ell} \Delta x\).

Wavelets

Decomposition of the solution on a wavelet basis [Daubechies, ’88], [Mallat, ’89] to measure its local regularity. “Practical” approach by [Harten, ’95], [Cohen et al., ’03].

Projection operator

Prediction operator at order \(2 s +1\)

\[ {\hat f}_{\ell+1,2 k}={f}_{\ell, k}+\sum_{\sigma=1}^s \psi_\sigma\left({f}_{\ell, k+\sigma}-{f}_{\ell, k-\sigma}\right) \]

Details are regularity indicator \[ {\mathrm{d}}_{\ell, {k}}:={f}_{\ell, {k}}-{\hat{f}}_{\ell, {k}} \]

Let \(f \in W^{\nu, \infty}\) (neigh. of \(C_{\ell, k}\) ), then \[ \left|{\mathrm{d}}_{\ell, k}\right| \lesssim 2^{-\ell \min (\nu, 2 s +1)}|f|_{W^{\min (\nu, 2 s +1), \infty}} \]

Fast wavelet transform:

means at the finest level can be recast as means at the coarsest level + details \[ \begin{array}{rlr} {f}_{\overline{\ell}} & \Longleftrightarrow & \left({f}_{\underline{\ell}}, {{d}}_{\underline{\ell} +1}, \ldots, {d}_{\bar{\ell}}\right)\\ \end{array} \]

Mesh coarsening (static)

Local regularity of the solution allows to select areas to coarsen

\[ {{f}}_{\bar{\ell}} \rightarrow \left({f}_{\underline{\ell}}, {\mathbf{d}}_{\underline{\ell}+1}, \ldots, {\mathbf{d}}_{\bar{\ell}}\right) \rightarrow \left({f}_{\underline{\ell}}, {\tilde{\mathbf{d}}}_{\underline{\ell}+1}, \ldots, \tilde{{\mathbf{d}}}_{\bar{\ell}}\right) \rightarrow {\tilde{{f}}}_{\bar{\ell}} \] \[ \tilde{{\mathrm{d}}}_{\ell, k}= \begin{cases}0, & \text { if } \left|{\mathbf{d}}_{\ell, k}\right| \leq \epsilon_{\ell}=2^{-d \Delta \ell} \epsilon, \quad \rightarrow \quad\left\|{\mathbf{f}}_{\bar{\ell}}-\tilde{{\mathbf{f}}}_{\bar{\ell}}\right\|_{\ell^p} \lesssim \epsilon \\ {\mathrm{d}}_{\ell, k}, & \text { otherwise} \end{cases} \]

Set a small (below \(\epsilon_{\ell}\)) detail to zero \(\equiv\) erase the cell \(C_{\ell, k}\) from the structure

Examples

Equation

\[ f(x) = 1 - \sqrt{\left| sin \left( \frac{\pi}{2} x \right) \right|} \; \text{for} \; x\in[-1, 1] \]

min level 1
max level 12
ε 10-3
compression rate 96.29%
error 0.00053

Numerical Analysis

Linear scalar transport equation

In this work, we are concerned with the numerical solution of the Cauchy problem associated with the linear scalar conservation law

\[ \partial_t u(t, x)+V \partial_x u(t, x)=0, \quad(t, x) \in \mathbb{R}^{+} \times \mathbb{R} \]

where \(V\) is the transport velocity, taken \(V>0\) without loss of generality. we consider 1 d problems. The extension to \(2\mathrm{~d}\) / \(3\mathrm{~d}\) problems is straightforward and usually done by tensorization [Bellotti2022] and yields analogous conclusions.

The discrete volumes are \[ C_{\ell, k}:=\left[2^{-\ell} k, 2^{-\ell}(k+1)\right], \quad k \in \{ 0,2^{\ell}-1 \}, \] for any \(\ell \in \{ \underline{\ell}, \bar{\ell} \}\). The measure of each cell at level \(\ell\) is \(\Delta x_{\ell}:=2^{-\ell}\) and we shall indicate \(\Delta x:=\Delta x_{\bar{\ell}}\). The cell centers are \(x_{\ell, k}:=\) \(2^{-\ell}(k+1 / 2)\). Finally, we shall indicate \(\Delta \ell:=\bar{\ell}-\ell\), hence \(\Delta x_{\ell}=2^{\Delta \ell} \Delta x\).

Finite Volume scheme

Finite Volume scheme at the finest level of resolution \(\bar{\ell}\) for any cell of indices \(\bar{k} \in \{ 0,2^{\bar{\ell}}-1 \}\). Explicit schemes read:

\[ \mathrm{v}_{\bar{\ell}, \bar{k}}^{n+1}=\mathrm{v}_{\bar{\ell}, \bar{k}}^n-\frac{\Delta t}{\Delta x}\left(\Phi\left(\mathrm{v}_{\bar{\ell}, \bar{k}+1 / 2}^n\right)-\Phi\left(\mathrm{v}_{\bar{\ell}, \bar{k}-1 / 2}^n\right)\right) \]

where we utilize the same linear numerical flux for the left and the right flux (conservativity) \[ \Phi\left(\mathbf{v}_{\bar{\ell}, \bar{k}-1 / 2}\right):=V \sum_{\alpha=\underline{\alpha}}^{\bar{\alpha}} \phi_\alpha \mathbf{v}_{\bar{\ell}, \bar{k}+\alpha}, \quad \Phi\left(\mathbf{v}_{\bar{\ell}, \bar{k}+1 / 2}\right):=V \sum_{\alpha=\underline{\alpha}}^{\bar{\alpha}} \phi_\alpha v_{\bar{\ell}, \bar{k}+1+\alpha} \]

How to include MRA I

We introduce the reconstruction operator \(\hat{s}\) instead of \(s\) on the cells \(\left(\bar{\ell}, 2^{\Delta \ell} k+\delta\right)\) for any \(\delta \in \mathbb{Z}\) at the finest level

  • \(\hat{s}=s\) : exact local flux reconstruction [Cohen et al. 2003].
  • \(\hat{s}=0\) but \(s>0\), direct evaluation or naive evaluation [Hovhannisyan et al 2010].

\[ \mathbf{w}_{\bar{\ell}, \bar{k}}^{n+1}=\mathbf{w}_{\bar{\ell}, \bar{k}}^n-\frac{\Delta t}{\Delta x}\left(\Phi\left(\hat{\hat{\mathbf{w}}}_{\bar{\ell}, \bar{k}+1 / 2}^n\right)-\Phi\left(\hat{\hat{\mathbf{w}}}_{\bar{\ell}, \bar{k}-1 / 2}^n\right)\right) \] \[ \Phi\left(\hat{\hat{\mathbf{w}}}_{\bar{\ell}, \bar{k}-1 / 2}\right):=V \sum_{\alpha=\underline{\alpha}}^{\bar{\alpha}} \phi_\alpha \hat{\hat{\mathbf{w}}}_{\bar{\ell}, \bar{k}+\alpha} \]

Theoretical results on the global error

Theorem 2

Assume that

  • The reference scheme satisfies the restricted stability condition \(\|E\| \leq 1\)
  • The Harten-like scheme satisfies the restricted stability condition \(\left\|\bar{E}_{\Lambda}\right\| \leq 1\) for any \(\Lambda\).

Then, for smooth solution, in the limit \(\Delta x \rightarrow 0\) (i.e. \(\bar{\ell} \rightarrow+\infty\) ) and for \(\Delta \underline{\ell}=\bar{\ell}-\underline{\ell}\) kept fixed, we have the error estimate

\[ \left\|\mathbf{v}_{\bar{\ell}}^n-\mathbf{w}_{\bar{\ell}}^n\right\| \leq C_{t r} t^n \Delta x^{2 \hat{s}+1}+C_{m r} \frac{t^n}{\lambda \Delta x} \epsilon \]

where \(C_{t r}=C_{t r}\left(\bar{\ell}-\underline{\ell},\left(\phi_\alpha\right)_\alpha, \lambda, \hat{s}, V\right)\) and \(C_{m r}=C_{m r}\left(\bar{\ell}-\underline{\ell},\left(\phi_\alpha\right)_\alpha, \lambda, \hat{s}, s, V\right)\). \[ \left\|\mathbf{u}_{\bar{\ell}}^n-\mathbf{w}_{\bar{\ell}}^n\right\| \leq C_{r e f} t^n \Delta x^\theta+C_{t r} t^n \Delta x^{2 \hat{s}+1}+C_{m r} \frac{t^n}{\lambda \Delta x} \epsilon \]

Burgers results

Burgers results (Error for scheme order 1)






Burgers results (MR solution for scheme order 1)

Burgers results (MR+MLF solution for scheme order 1)

Burgers results (Error for scheme order 1)






Burgers results (MR solution for scheme order 1)

Burgers results (MR+MLF solution for scheme order 1)

Burgers results (MR+MLF solution order 1) sinus

A dual ImEx/Splitting strategy for stiff PDEs

A dual ImEx/Splitting strategy for stiff PDEs

  • A strategy has been designed (PhD M. Duarte) relying on time-adaptive operator splitting with dynamically adapted mesh (multiresolution) and error control:
    • optimal computational cost and parallelization properties (large splitting time steps)
  • We aim at resolving stiff PDEs with samurai and ponio libraries with the same computation favorable properties:
    • local implicitation of the source term
    • explicit diffusion integration without von Neumann stability limit (ROCK)
    • high-order in space and time integration of convection, including shocks
    • strong acceleration through adaptation in space and time
  • Stumbling block: what to do when reaction and diffusion coupled at smallest time scale (complex chem. - ignition)

An ImEx strategy for stiff reaction-diffusion

Belousov-Zhabotinsky (very stiff source - 3 eq) \[ \left\{ \begin{aligned} \partial_t a - D_a \, \Delta a &= \frac{1}{\mu} ( -qa - ab + fc) \\ \partial_t b - D_b \, \Delta b &= \frac{1}{\varepsilon} ( qa - ab + b\,(1-b)) \\ \partial_t c - D_c \, \Delta c &= b - c \end{aligned} \right. \]

  • Error to the reference quasi-exact solution is second order in time but not of the same origin (splitting error vs. IMEX error) - but still error control
  • Larger time step can be taken with IMEX while keeping a proper solution (no disastrous splitting errors - wrong wave speed)
  • When optimal large splitting time step is taken, IMEX as efficient as splitting, whereas it is advantageous for smaller time steps as well as larger time steps
  • No boundary condition problems
  • Same computational good properties

Simulation with ponio / samurai

\(\epsilon = 1e-3\), \(\underline{\ell} = 2\), \(\bar{\ell} = 10\)

Conclusion

  • Analysis of mesh adaptation completed for convection - extension to reaction and diffusion
    • Link with AMR important
  • ImEx strategy implemented in ponio - coupled to samurai
    • Implicit source term / explicit diffusion (no von Neumann stability limit - ROCK)
  • Extension to convection on the way - required fine error analysis
    • high-order in space and time integration of convection, including shocks (OSMP)

samurai