\[ \partial_t u + \partial_x \left ( f(u) \right ) = 0, \quad t \geq 0, \quad x \in \mathbb{R}, \qquad f(u) = \dfrac{u^2}{2}, \]
Consider the Cauchy problem with initial conditions:
\[ u^0(x) = \frac{1}{2} (1+\sin(\pi(x-1))) \quad x \in [-1,1] \]
Decomposition of the solution on a wavelet basis [Daubechies, ’88], [Mallat, ’89] to measure its local regularity. “Practical” approach by [Harten, ’95], [Cohen et al., ’03].
Projection operator
Prediction operator at order \(2 s +1\)
\[ {\hat f}_{\ell+1,2 k}={f}_{\ell, k}+\sum_{\sigma=1}^s \psi_\sigma\left({f}_{\ell, k+\sigma}-{f}_{\ell, k-\sigma}\right) \]
Details are regularity indicator \[ {\mathrm{d}}_{\ell, {k}}:={f}_{\ell, {k}}-{\hat{f}}_{\ell, {k}} \]
Let \(f \in W^{\nu, \infty}\) (neigh. of \(C_{\ell, k}\) ), then \[ \left|{\mathrm{d}}_{\ell, k}\right| \lesssim 2^{-\ell \min (\nu, 2 s +1)}|f|_{W^{\min (\nu, 2 s +1), \infty}} \]
Fast wavelet transform:
means at the finest level can be recast as means at the coarsest level + details \[ \begin{array}{rlr} {f}_{\overline{\ell}} & \Longleftrightarrow & \left({f}_{\underline{\ell}}, {{d}}_{\underline{\ell} +1}, \ldots, {d}_{\bar{\ell}}\right)\\ \end{array} \]
Local regularity of the solution allows to select areas to coarsen
\[ {{f}}_{\bar{\ell}} \rightarrow \left({f}_{\underline{\ell}}, {\mathbf{d}}_{\underline{\ell}+1}, \ldots, {\mathbf{d}}_{\bar{\ell}}\right) \rightarrow \left({f}_{\underline{\ell}}, {\tilde{\mathbf{d}}}_{\underline{\ell}+1}, \ldots, \tilde{{\mathbf{d}}}_{\bar{\ell}}\right) \rightarrow {\tilde{{f}}}_{\bar{\ell}} \] \[ \tilde{{\mathrm{d}}}_{\ell, k}= \begin{cases}0, & \text { if } \left|{\mathbf{d}}_{\ell, k}\right| \leq \epsilon_{\ell}=2^{-d \Delta \ell} \epsilon, \quad \rightarrow \quad\left\|{\mathbf{f}}_{\bar{\ell}}-\tilde{{\mathbf{f}}}_{\bar{\ell}}\right\|_{\ell^p} \lesssim \epsilon \\ {\mathrm{d}}_{\ell, k}, & \text { otherwise} \end{cases} \]
Set a small (below \(\epsilon_{\ell}\)) detail to zero \(\equiv\) erase the cell \(C_{\ell, k}\) from the structure
Equation
\[ f(x) = 1 - \sqrt{\left| sin \left( \frac{\pi}{2} x \right) \right|} \; \text{for} \; x\in[-1, 1] \]
min level | 1 |
max level | 12 |
ε | 10-3 |
compression rate | 96.29% |
error | 0.00053 |
In this work, we are concerned with the numerical solution of the Cauchy problem associated with the linear scalar conservation law
\[ \partial_t u(t, x)+V \partial_x u(t, x)=0, \quad(t, x) \in \mathbb{R}^{+} \times \mathbb{R} \]
where \(V\) is the transport velocity, taken \(V>0\) without loss of generality. we consider 1 d problems. The extension to \(2\mathrm{~d}\) / \(3\mathrm{~d}\) problems is straightforward and usually done by tensorization [Bellotti2022] and yields analogous conclusions.
The discrete volumes are \[ C_{\ell, k}:=\left[2^{-\ell} k, 2^{-\ell}(k+1)\right], \quad k \in \{ 0,2^{\ell}-1 \}, \] for any \(\ell \in \{ \underline{\ell}, \bar{\ell} \}\). The measure of each cell at level \(\ell\) is \(\Delta x_{\ell}:=2^{-\ell}\) and we shall indicate \(\Delta x:=\Delta x_{\bar{\ell}}\). The cell centers are \(x_{\ell, k}:=\) \(2^{-\ell}(k+1 / 2)\). Finally, we shall indicate \(\Delta \ell:=\bar{\ell}-\ell\), hence \(\Delta x_{\ell}=2^{\Delta \ell} \Delta x\).
Finite Volume scheme at the finest level of resolution \(\bar{\ell}\) for any cell of indices \(\bar{k} \in \{ 0,2^{\bar{\ell}}-1 \}\). Explicit schemes read:
\[ \mathrm{v}_{\bar{\ell}, \bar{k}}^{n+1}=\mathrm{v}_{\bar{\ell}, \bar{k}}^n-\frac{\Delta t}{\Delta x}\left(\Phi\left(\mathrm{v}_{\bar{\ell}, \bar{k}+1 / 2}^n\right)-\Phi\left(\mathrm{v}_{\bar{\ell}, \bar{k}-1 / 2}^n\right)\right) \]
where we utilize the same linear numerical flux for the left and the right flux (conservativity) \[ \Phi\left(\mathbf{v}_{\bar{\ell}, \bar{k}-1 / 2}\right):=V \sum_{\alpha=\underline{\alpha}}^{\bar{\alpha}} \phi_\alpha \mathbf{v}_{\bar{\ell}, \bar{k}+\alpha}, \quad \Phi\left(\mathbf{v}_{\bar{\ell}, \bar{k}+1 / 2}\right):=V \sum_{\alpha=\underline{\alpha}}^{\bar{\alpha}} \phi_\alpha v_{\bar{\ell}, \bar{k}+1+\alpha} \]
We introduce the reconstruction operator \(\hat{s}\) instead of \(s\) on the cells \(\left(\bar{\ell}, 2^{\Delta \ell} k+\delta\right)\) for any \(\delta \in \mathbb{Z}\) at the finest level
\[ \mathbf{w}_{\bar{\ell}, \bar{k}}^{n+1}=\mathbf{w}_{\bar{\ell}, \bar{k}}^n-\frac{\Delta t}{\Delta x}\left(\Phi\left(\hat{\hat{\mathbf{w}}}_{\bar{\ell}, \bar{k}+1 / 2}^n\right)-\Phi\left(\hat{\hat{\mathbf{w}}}_{\bar{\ell}, \bar{k}-1 / 2}^n\right)\right) \] \[ \Phi\left(\hat{\hat{\mathbf{w}}}_{\bar{\ell}, \bar{k}-1 / 2}\right):=V \sum_{\alpha=\underline{\alpha}}^{\bar{\alpha}} \phi_\alpha \hat{\hat{\mathbf{w}}}_{\bar{\ell}, \bar{k}+\alpha} \]
Theorem 2
Assume that
Then, for smooth solution, in the limit \(\Delta x \rightarrow 0\) (i.e. \(\bar{\ell} \rightarrow+\infty\) ) and for \(\Delta \underline{\ell}=\bar{\ell}-\underline{\ell}\) kept fixed, we have the error estimate
\[ \left\|\mathbf{v}_{\bar{\ell}}^n-\mathbf{w}_{\bar{\ell}}^n\right\| \leq C_{t r} t^n \Delta x^{2 \hat{s}+1}+C_{m r} \frac{t^n}{\lambda \Delta x} \epsilon \]
where \(C_{t r}=C_{t r}\left(\bar{\ell}-\underline{\ell},\left(\phi_\alpha\right)_\alpha, \lambda, \hat{s}, V\right)\) and \(C_{m r}=C_{m r}\left(\bar{\ell}-\underline{\ell},\left(\phi_\alpha\right)_\alpha, \lambda, \hat{s}, s, V\right)\). \[ \left\|\mathbf{u}_{\bar{\ell}}^n-\mathbf{w}_{\bar{\ell}}^n\right\| \leq C_{r e f} t^n \Delta x^\theta+C_{t r} t^n \Delta x^{2 \hat{s}+1}+C_{m r} \frac{t^n}{\lambda \Delta x} \epsilon \]
Belousov-Zhabotinsky (very stiff source - 3 eq) \[ \left\{ \begin{aligned} \partial_t a - D_a \, \Delta a &= \frac{1}{\mu} ( -qa - ab + fc) \\ \partial_t b - D_b \, \Delta b &= \frac{1}{\varepsilon} ( qa - ab + b\,(1-b)) \\ \partial_t c - D_c \, \Delta c &= b - c \end{aligned} \right. \]
Simulation with ponio / samurai
\(\epsilon = 1e-3\), \(\underline{\ell} = 2\), \(\bar{\ell} = 10\)
Modelling Summer Visit 2025 - NASA Midterm presentation - July 21st 2025